Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149839, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564943

RESUMO

Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.


Assuntos
Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Anticorpos
2.
BMC Bioinformatics ; 25(1): 122, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515052

RESUMO

BACKGROUND: Nanobodies, also known as VHH or single-domain antibodies, are unique antibody fragments derived solely from heavy chains. They offer advantages of small molecules and conventional antibodies, making them promising therapeutics. The paratope is the specific region on an antibody that binds to an antigen. Paratope prediction involves the identification and characterization of the antigen-binding site on an antibody. This process is crucial for understanding the specificity and affinity of antibody-antigen interactions. Various computational methods and experimental approaches have been developed to predict and analyze paratopes, contributing to advancements in antibody engineering, drug development, and immunotherapy. However, existing predictive models trained on traditional antibodies may not be suitable for nanobodies. Additionally, the limited availability of nanobody datasets poses challenges in constructing accurate models. METHODS: To address these challenges, we have developed a novel nanobody prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which is specifically designed for predicting nanobody-antigen binding sites. The model adopts a training strategy more suitable for nanobodies, based on an advanced natural language processing (NLP) model called BERT (Bidirectional Encoder Representations from Transformers). To be more specific, the model utilizes a masked language modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) to learn the contextual information of the nanobody sequence and predict its binding site. RESULTS: NanoBERTa-ASP achieved exceptional performance in predicting nanobody binding sites, outperforming existing methods, indicating its proficiency in capturing sequence information specific to nanobodies and accurately identifying their binding sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms between nanobodies and antigens, contributing to a better understanding of nanobodies and facilitating the design and development of nanobodies with therapeutic potential. CONCLUSION: NanoBERTa-ASP represents a significant advancement in nanobody paratope prediction. Its superior performance highlights the potential of deep learning approaches in nanobody research. By leveraging the increasing volume of nanobody data, NanoBERTa-ASP can further refine its predictions, enhance its performance, and contribute to the development of novel nanobody-based therapeutics. Github repository: https://github.com/WangLabforComputationalBiology/NanoBERTa-ASP.


Assuntos
Anticorpos de Domínio Único , Sítios de Ligação de Anticorpos , Anticorpos de Domínio Único/química , Anticorpos , Sítios de Ligação , Especificidade de Anticorpos
3.
Methods Mol Biol ; 2754: 131-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512665

RESUMO

Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Proteínas tau/genética , Epitopos , Cadeias Pesadas de Imunoglobulinas/química , Biblioteca Gênica
4.
BMC Infect Dis ; 24(1): 199, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350843

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an evolving global pandemic, and nanobodies, as well as other single-domain antibodies (sdAbs), have been recognized as a potential diagnostic and therapeutic tool for infectious diseases. High-throughput screening techniques such as phage display have been developed as an alternative to in vivo immunization for the discovery of antibody-like target-specific binders. METHODS: We designed and constructed a highly diverse synthetic phage library sdAb-U (single-domain Antibody - Universal library ) based on a human framework. The SARS-CoV-2 receptor-binding domain (RBD) was expressed and purified. The universal library sdAb-U was panned against the RBD protein target for two rounds, followed by monoclonal phage ELISA (enzyme-linked immunosorbent assay) to identify RBD-specific binders (the first stage). High-affinity binders were sequenced and the obtained CDR1 and CDR2 sequences were combined with fully randomized CDR3 to construct a targeted (focused) phage library sdAb-RBD, for subsequent second-stage phage panning (also two rounds) and screening. Then, sequences with high single-to-background ratios in phage ELISA were selected for expression. The binding affinities of sdAbs to RBD were measured by an ELISA-based method. In addition, we conducted competition ELISA (using ACE2 ectodomain S19-D615) and SARS-CoV-2 pseudovirus neutralization assays for the high-affinity RBD-binding sdAb39. RESULTS: Significant enrichments were observed in both the first-stage (universal library) and the second-stage (focused library) phage panning. Five RBD-specific binders were identified in the first stage with high ELISA signal-to-background ratios. In the second stage, we observed a much higher possibility of finding RBD-specific clones in phage ELISA. Among 45 selected RBD-positive sequences, we found eight sdAbs can be well expressed, and five of them show high-affinity to RBD (EC50 < 100nM). We finally found that sdAb39 (EC50 ~ 4nM) can compete with ACE2 for binding to RBD. CONCLUSION: Overall, this two-stage strategy of synthetic phage display libraries enables rapid selection of SARS-CoV-2 RBD sdAb with potential therapeutic activity, and this two-stage strategy can potentially be used for rapid discovery of sdAbs against other targets.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Enzima de Conversão de Angiotensina 2 , COVID-19/diagnóstico , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
J Transl Med ; 22(1): 163, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365700

RESUMO

BACKGROUND: Soluble oligomeric forms of Tau protein have emerged as crucial players in the propagation of Tau pathology in Alzheimer's disease (AD). Our objective is to introduce a single-domain antibody (sdAb) named 2C5 as a novel radiotracer for the efficient detection and longitudinal monitoring of oligomeric Tau species in the human brain. METHODS: The development and production of 2C5 involved llama immunization with the largest human Tau isoform oligomers of different maturation states. Subsequently, 2C5 underwent comprehensive in vitro characterization for affinity and specificity via Enzyme-Linked Immunosorbent Assay and immunohistochemistry on human brain slices. Technetium-99m was employed to radiolabel 2C5, followed by its administration to healthy mice for biodistribution analysis. RESULTS: 2C5 exhibited robust binding affinity towards Tau oligomers (Kd = 6.280 nM ± 0.557) and to Tau fibers (Kd = 5.024 nM ± 0.453), with relatively weaker binding observed for native Tau protein (Kd = 1791 nM ± 8.714) and amyloid peptide (Kd > 10,000 nM). Remarkably, this SdAb facilitated immuno-histological labeling of pathological forms of Tau in neurons and neuritic plaques, yielding a high-contrast outcome in AD patients, closely mirroring the performance of reference antibodies AT8 and T22. Furthermore, 2C5 SdAb was successfully radiolabeled with 99mTc, preserving stability for up to 6 h post-radiolabeling (radiochemical purity > 93%). However, following intravenous injection into healthy mice, the predominant uptake occurred in kidneys, amounting to 115.32 ± 3.67, 97.70 ± 43.14 and 168.20 ± 34.52% of injected dose per gram (% ID/g) at 5, 10 and 45 min respectively. Conversely, brain uptake remained minimal at all measured time points, registering at 0.17 ± 0.03, 0.12 ± 0.07 and 0.02 ± 0.01% ID/g at 5, 10 and 45 min post-injection respectively. CONCLUSION: 2C5 demonstrates excellent affinity and specificity for pathological Tau oligomers, particularly in their early stages of oligomerization. However, the current limitation of insufficient blood-brain barrier penetration necessitates further modifications before considering its application in nuclear medicine imaging for humans.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/patologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Proteínas tau/química , Proteínas tau/imunologia , Distribuição Tecidual
6.
Int J Nanomedicine ; 18: 7173-7181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076734

RESUMO

Introduction: The monkeypox (Mpox) virus epidemic presents a significant risk to global public health security. A35R, a crucial constituent of EEV, plays a pivotal role in virus transmission, serves as a vital target for vaccine development, and has potential for serological detection. Currently, there is a dearth of research on nanobodies targeting A35R. The purpose of this study is to identify specific nanobodies target A35R, so as to provide new antibody candidates for Mpox vaccine development and diagnostic kit development. Methods: Three nanobodies specific to the monkeypox virus protein A35R were screened from a naïve phage display library. After four rounds of panning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA). Further, the nanobody fusion protein was constructed in pNFCG1-IgG1-Fc vector and expressed in HEK293F cells and purified by affinity chromatography. The specificity and affinity of the nanobodies were identified by ELISA. The binding kinetics of the VHH antibody to A35R were assessed via employment of a bio-layer interferometry (BLI) apparatus, thereby determining the nanobodies affinity. Results: The three purified nanobodies showed specific high-affinity binding MPXV A35R, of them, VHH-1 had the best antigen binding affinity (EC50 = 0.010 ug/mL). In addition, VHH-1 on Protein A biosensor can bind Mpox virus A35R, with an affinity constant of 54 nM as determined in BLI assay. Conclusion: In sum, we has obtained three nanobody strains against Mpox virus A35R with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of Mpox virus.


Assuntos
Bacteriófagos , Anticorpos de Domínio Único , Humanos , Vírus da Varíola dos Macacos , Anticorpos de Domínio Único/química , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática/métodos
7.
J Mol Biol ; 435(24): 168320, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865287

RESUMO

Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina , Anticorpos de Domínio Único , Animais , Humanos , Amiloide/imunologia , Caenorhabditis elegans , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/uso terapêutico , Miócitos Cardíacos/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/terapia
8.
Front Immunol ; 14: 1268900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799715

RESUMO

Introduction: T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes. Small antigen binding moieties such as nanobodies, are promising candidates for such tracer development. Methods: We generated a panel of anti-human or anti-mouse TIGIT nanobodies from immunized llamas. In addition, we designed a single-chain variable fragment derived from the clinically tested monoclonal antibody Vibostolimab targeting TIGIT, and assessed its performance alongside the nanobodies. In vitro characterization studies were performed, including binding ability and affinity to cell expressed or recombinant TIGIT. After Technetium-99m labeling, the nanobodies and the single-chain variable fragment were evaluated in vivo for their ability to detect TIGIT expression using SPECT/CT imaging, followed by ex vivo biodistribution analysis. Results: Nine nanobodies were selected for binding to recombinant and cell expressed TIGIT with low sub-nanomolar affinities and are thermostable. A six-fold higher uptake in TIGIT-overexpressing tumor was demonstrated one hour post- injection with Technetium-99m labeled nanobodies compared to an irrelevant control nanobody. Though the single-chain variable fragment exhibited superior binding to TIGIT-expressing peripheral blood mononuclear cells in vitro, its in vivo behavior yielded lower tumor-to-background ratios at one hour post- injection, indicating that nanobodies are better suited for in vivo imaging than the single-chain variable fragment. Despite the good affinity, high specificity and on-target uptake in mice in this setting, imaging of TIGIT expression on tumor- infiltrating lymphocytes within MC38 tumors remained elusive. This is likely due to the low expression levels of TIGIT in this model. Discussion: The excellent affinity, high specificity and rapid on-target uptake in mice bearing TIGIT- overexpressing tumors showed the promising diagnostic potential of nanobodies to noninvasively image high TIGIT expression within the tumor. These findings hold promise for clinical translation to aid patient selection and improve therapy response.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Tecnécio , Anticorpos de Domínio Único/química , Distribuição Tecidual , Leucócitos Mononucleares , Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias/diagnóstico por imagem , Receptores Imunológicos
9.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836685

RESUMO

Mpox virus (MPXV), the most pathogenic zoonotic orthopoxvirus, caused worldwide concern during the SARS-CoV-2 epidemic. Growing evidence suggests that the MPXV surface protein A29 could be a specific diagnostic marker for immunological detection. In this study, a fully synthetic phage display library was screened, revealing two nanobodies (A1 and H8) that specifically recognize A29. Subsequently, an in vitro affinity maturation strategy based on computer-aided design was proposed by building and docking the A29 and A1 three-dimensional structures. Ligand-receptor binding and molecular dynamics simulations were performed to predict binding modes and key residues. Three mutant antibodies were predicted using the platform, increasing the affinity by approximately 10-fold compared with the parental form. These results will facilitate the application of computers in antibody optimization and reduce the cost of antibody development; moreover, the predicted antibodies provide a reference for establishing an immunological response against MPXV.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Vírus da Varíola dos Macacos , SARS-CoV-2/metabolismo , Desenho Assistido por Computador
10.
J Biol Chem ; 299(11): 105337, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838175

RESUMO

Heavy chain-only antibodies can offer advantages of higher binding affinities, reduced sizes, and higher stabilities than conventional antibodies. To address the challenge of SARS-CoV-2 coronavirus, a llama-derived single-domain nanobody C5 was developed previously that has high COVID-19 virus neutralization potency. The fusion protein C5-Fc comprises two C5 domains attached to a glycosylated Fc region of a human IgG1 antibody and shows therapeutic efficacy in vivo. Here, we have characterized the solution arrangement of the molecule. Two 1443 Da N-linked glycans seen in the mass spectra of C5-Fc were removed and the glycosylated and deglycosylated structures were evaluated. Reduction of C5-Fc with 2-mercaptoethylamine indicated three interchain Cys-Cys disulfide bridges within the hinge. The X-ray and neutron Guinier RG values, which provide information about structural elongation, were similar at 4.1 to 4.2 nm for glycosylated and deglycosylated C5-Fc. To explain these RG values, atomistic scattering modeling based on Monte Carlo simulations resulted in 72,737 and 56,749 physically realistic trial X-ray and neutron structures, respectively. From these, the top 100 best-fit X-ray and neutron models were identified as representative asymmetric solution structures, similar to that of human IgG1, with good R-factors below 2.00%. Both C5 domains were solvent exposed, consistent with the functional effectiveness of C5-Fc. Greater disorder occurred in the Fc region after deglycosylation. Our results clarify the importance of variable and exposed C5 conformations in the therapeutic function of C5-Fc, while the glycans in the Fc region are key for conformational stability in C5-Fc.


Assuntos
Anticorpos Antivirais , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/química , Modelos Moleculares , Polissacarídeos , Anticorpos Antivirais/química , Anticorpos de Domínio Único/química
11.
J Agric Food Chem ; 71(40): 14758-14768, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768036

RESUMO

Nanobody (Nb) has gained significant attention in immunoassays owing to its numerous advantages, particularly its ease of molecular evolution. However, the limited understanding of how high sensitivity and specificity attained for antihapten Nbs hamper the development of high-performance Nbs. Herein, the antiparathion Nb (Nb9) we prepared previously was chosen as the model, and an approach based on X-ray crystallography, molecular docking, and rational site-directed saturation mutation for constructing a rapid and effective platform for nanobody evolution was described. Based on the structural analysis, two mutants, namely Nb-D5 (IC50 = 2.4 ± 0.2 ng/mL) and Nb-D12 (IC50 = 2.7 ± 0.1 ng/mL), were selected out from a six-sites directed saturation mutation library, 3.5-fold and 3.1-fold sensitivity enhancement over Nb9 to parathion, respectively. Besides, Nb-D12 exhibited improved sensitivity for quinalphos, triazophos, and coumaphos (5.4-35.4 ng/mL), indicating its broader detection potential. Overall, our study advances an effective strategy for the future rational evolution of Nbs with desirable performance.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Simulação de Acoplamento Molecular , Sensibilidade e Especificidade , Imunoensaio , Evolução Molecular
12.
Nat Commun ; 14(1): 5964, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749098

RESUMO

The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively. Here, we solved the cryo-electron microscopy structures of the nanobody-receptor complexes. E3 and C4 bind to a common epitope involving two subunits at the apex of the receptor. They form by themselves a symmetric pentameric assembly that extends the extracellular domain. Unlike C4, the binding of E3 drives an agonist-bound conformation of the extracellular domain in the absence of an orthosteric agonist, and mutational analysis shows a key contribution of an N-linked sugar moiety in mediating E3 potentiation. The nanobody E3, by remotely controlling the global allosteric conformation of the receptor, implements an original mechanism of regulation that opens new avenues for drug design.


Assuntos
Anticorpos de Domínio Único , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/química , Membrana Celular , Microscopia Crioeletrônica , Desenho de Fármacos , Anticorpos de Domínio Único/química
13.
Biotechnol J ; 18(11): e2300039, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458140

RESUMO

Phage display and biopanning are powerful tools for generating binding molecules for a specific target. However, the selection process based only on binding affinity provides no assurance for the antibody's affinity to the target epitope. In this study, we propose a molecular-evolution approach guided by native protein-protein interactions to generate epitope-targeting antibodies. The binding-site sequence in a native protein was grafted into a complementarity-determining region (CDR) in the nanobody, and a nonrelated CDR loop (in the grafted nanobody) was randomized to create a phage display library. In this construction of nanobodies by integrating graft and evolution technology (CAnIGET method), suitable grafting of the functional sequence added functionality to the nanobody, and the molecular-evolution approach enhanced the binding function to inhibit the native protein-protein interactions. To apply for biological tool with growth screening, model nanobodies with an affinity for filamenting temperature-sensitive mutant Z (FtsZ) from Staphylococcus aureus were constructed and completely inhibited the polymerization of FtsZ as a function. Consequently, the expression of these nanobodies drastically decreased the cell division rate. We demonstrate the potential of the CAnIGET method with the use of native protein-protein interactions for steady epitope-specific evolutionary engineering.


Assuntos
Biblioteca de Peptídeos , Anticorpos de Domínio Único , Anticorpos , Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade , Epitopos , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química
14.
PLoS One ; 18(7): e0288259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459326

RESUMO

Human epidermal growth factor receptor-2 (HER2) is a well-recognised biomarker associated with 25% of breast cancers. In most cases, early detection and/or treatment correlates with an increased chance of survival. This study, has identified and characterised a highly specific anti-HER2 single-domain antibody (sdAb), NM-02, as a potential theranostic tool. Complete structural description by X-ray crystallography has revealed a non-overlapping epitope with current anti-HER2 antibodies. To reduce the immunogenicity risk, NM-02 underwent a humanisation process and retained wild type-like binding properties. To further de-risk the progression towards chemistry, manufacturing and control (CMC) we performed full developability profiling revealing favourable thermal and physical biochemical 'drug-like' properties. Finally, the application of the lead humanised NM-02 candidate (variant K) for HER2-specific imaging purposes was demonstrated using breast cancer HER2+/BT474 xenograft mice.


Assuntos
Neoplasias da Mama , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Feminino , Anticorpos de Domínio Único/química , Medicina de Precisão , Receptor ErbB-2/metabolismo , Neoplasias da Mama/metabolismo , Anticorpos , Linhagem Celular Tumoral
15.
J Biosci Bioeng ; 136(3): 173-181, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487915

RESUMO

Cancer treatment has been revolutionized by immune checkpoint inhibitors, which regulate immune cell function by blocking the interactions between immune checkpoint molecules and their ligands. The interaction between programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) is a target for immune checkpoint inhibitors. Nanobodies, which are recombinant variable domains of heavy-chain-only antibodies, can replace existing immune checkpoint inhibitors, such as anti-PD-1 or anti-PD-L1 conventional antibodies. However, the screening process for high-affinity nanobodies is laborious and time-consuming. Here, we identified high-affinity anti-PD-1 nanobodies using peptide barcoding, which enabled reliable and efficient screening by distinguishing each nanobody with a peptide barcode that was genetically appended to each nanobody. We prepared a peptide-barcoded nanobody (PBNb) library with thousands of variants. Three high-affinity PBNbs were identified from the PBNb library by quantifying the peptide barcodes derived from high-affinity PBNbs. Furthermore, these three PBNbs neutralized the interaction between PD-1 and PD-L1. Our results demonstrate the utility of peptide barcoding and the resulting nanobodies can be used as experimental tools and antitumor agents.


Assuntos
Antineoplásicos , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Inibidores de Checkpoint Imunológico , Peptídeos/química , Biblioteca de Peptídeos
16.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276407

RESUMO

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Saccharomyces cerevisiae/metabolismo , SARS-CoV-2 , Anticorpos , Epitopos
17.
Eur J Nucl Med Mol Imaging ; 50(12): 3735-3749, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382662

RESUMO

PURPOSE: An accurate diagnosis of colorectal carcinoma (CRC) can assist physicians in developing reasonable therapeutic regimens, thereby significantly improving the patient's prognosis. Carcinoembryonic antigen (CEA)-targeted PET imaging shows great potential for this purpose. Despite showing remarkable abilities to detect primary and metastatic CRC, previously reported CEA-specific antibody radiotracers or pretargeted imaging are not suitable for clinical use due to poor pharmacokinetics and complicated imaging procedures. In contrast, radiolabeled nanobodies exhibit ideal characteristics for PET imaging, for instance, rapid clearance rates and excellent distribution profiles, allowing same-day imaging with sufficient contrast. In this study, we developed a novel CEA-targeted nanobody radiotracer, [68 Ga]Ga-HNI01, and assessed its tumor imaging ability and biodistribution profile in preclinical xenografts and patients with primary and metastatic CRC. METHODS: The novel nanobody HNI01 was acquired by immunizing the llama with CEA proteins. [68 Ga]Ga-HNI01 was synthesized by site-specifically conjugating [68 Ga]Ga with tris(hydroxypyridinone) (THP). Small-animal PET imaging and biodistribution studies were performed in CEA-overexpressed LS174T and CEA-low-expressed HT-29 tumor models. Following successful preclinical assessment, a phase I study was conducted on 9 patients with primary and metastatic CRC. Study participants received 151.21 ± 25.25 MBq of intravenous [68 Ga]Ga-HNI01 and underwent PET/CT scans at 1 h and 2 h post injection. Patients 01-03 also underwent whole-body dynamic PET imaging within 0-40 min p.i. All patients underwent [18F]F-FDG PET/CT imaging within 1 week after [68 Ga]Ga-HNI01 imaging. Tracer distribution, pharmacokinetics, and radiation dosimetry were calculated. RESULTS: [68 Ga]Ga-HNI01 was successfully synthesized within 10 min under mild conditions, and the radiochemical purity was more than 98% without purification. Micro-PET imaging with [68 Ga]Ga-HNI01 revealed clear visualization of LS174T tumors, while signals from HT-29 tumors were significantly lower. Biodistribution studies indicated that uptake of [68 Ga]Ga-HNI01 in LS174T and HT-29 was 8.83 ± 3.02%ID/g and 1.81 ± 0.87%ID/g, respectively, at 2 h p.i. No adverse events occurred in all clinical participants after the injection of [68 Ga]Ga-HNI01. A fast blood clearance and low background uptake were observed, and CRC lesions could be visualized with high contrast as early as 30 min after injection. [68 Ga]Ga-HNI01 PET could clearly detect metastatic lesions in the liver, lung, and pancreas and showed superior ability in detecting small metastases. A significant accumulation of radioactivity was observed in the kidney, and normal tissues physiologically expressing CEA receptors showed slight uptakes of [68 Ga]Ga-HNI01. An interesting finding was that strong uptake of [68 Ga]Ga-HNI01 was found in non-malignant colorectal tissues adjacent to the primary tumor in some patients, suggesting abnormal CEA expression in these healthy tissues. CONCLUSION: [68 Ga]Ga-HNI01 is a novel CEA-targeted PET imaging radiotracer with excellent pharmacokinetics and favorable dosimetry profiles. [68 Ga]Ga-HNI01 PET is an effective and convenient imaging tool for detecting CRC lesions, particularly for identifying small metastases. Furthermore, its high specificity for CEA in vivo makes it an ideal tool for selecting patients for anti-CEA therapy.


Assuntos
Neoplasias Colorretais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Humanos , Anticorpos Monoclonais/metabolismo , Antígeno Carcinoembrionário , Neoplasias Colorretais/diagnóstico por imagem , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia
18.
J Biol Chem ; 299(9): 104927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330175

RESUMO

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Assuntos
Anticorpos Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Receptores de Superfície Celular , Anticorpos de Domínio Único , Humanos , Antibacterianos/farmacologia , Heme/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêutico , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Antígenos de Bactérias/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Camelídeos Americanos , Animais , Ligação Proteica/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular
19.
J Agric Food Chem ; 71(22): 8665-8672, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227100

RESUMO

Human noroviruses pose grave threats to public health and economy. In this study, we genetically engineered yeast (Saccharomyces cerevisiae EBY100) to display specific norovirus-binding nanobodies (Nano-26 and Nano-85) on cell surface to facilitate the concentration of noroviruses for improved detection. Binding of norovirus virus-like particles (VLPs) to these nanobody-displaying yeasts was confirmed and characterized using confocal microscopy and flow cytometry. The ability of our engineered yeasts to capture norovirus VLPs can reach up to 91.3%. Furthermore, this approach was applied to concentrate and detect norovirus VLPs in a real food matrix. A wide linear detection range (1-104 pg/g) was observed, and the detection limit on spiked spinach was calculated as low as 0.071 pg/g. Overall, our engineered yeasts could be a promising approach to concentrate and purify noroviruses in food samples for easy detection, which allows us to prevent the spread of food-borne virus in the food supply chain.


Assuntos
Norovirus , Anticorpos de Domínio Único , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Norovirus/genética
20.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241731

RESUMO

The number of applications for nanobodies is steadily expanding, positioning these molecules as fast-growing biologic products in the biotechnology market. Several of their applications require protein engineering, which in turn would greatly benefit from having a reliable structural model of the nanobody of interest. However, as with antibodies, the structural modeling of nanobodies is still a challenge. With the rise of artificial intelligence (AI), several methods have been developed in recent years that attempt to solve the problem of protein modeling. In this study, we have compared the performance in nanobody modeling of several state-of-the-art AI-based programs, either designed for general protein modeling, such as AlphaFold2, OmegaFold, ESMFold, and Yang-Server, or specifically designed for antibody modeling, such as IgFold, and Nanonet. While all these programs performed rather well in constructing the nanobody framework and CDRs 1 and 2, modeling CDR3 still represents a big challenge. Interestingly, tailoring an AI method for antibody modeling does not necessarily translate into better results for nanobodies.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Inteligência Artificial , Benchmarking , Biotecnologia , Engenharia de Proteínas , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...